Key Steps to Implementation of the new Science 7-10 Syllabus, a guide for faculty team leaders

Step One: Planning

Objective: The team leader will have a clear overview of the new Science 7-10 Syllabus and be confident to lead its implementation.

The team leader will Identify

- o the pattern of implementation that is appropriate for your school e.g. Years 7 and 9 in 2025, Years 8 and 10 in 2026.
- o sector advice on implementation e.g. Department of Education, Catholic Schools, Association of Independent Schools.
- o school requirements eg timelines, advice, school-wide templates.
- o special programs within the school that may need to integrate with Science programming e.g. support and enrichment programs, off-campus programs, IB Middle Years Program.

Engage

- o with faculty team members to request a reading of the Science 7-10 Syllabus (2023) and stimulate constructive conversations.
- o with English, Mathematics and Technology to obtain advice on implementation.
- o with school leadership to advocate for teacher release time.
- o With NESA's Advice on Programming.

7-10 New Science Syllabus Resources

Explore

- o links between syllabuses eg Mathematics and English (<u>NSW Curriculum</u>) and related Scopes and Sequences eg Year 7 Forces and Year 7 Algebraic Techniques; Stage 4 Working Scientifically Communicating and Stage 4 English Composing Texts.
- o professional development opportunities for yourself and your team members eg <u>STANSW</u> conferences and networks.

Step Two: Unpacking the Syllabus

Objective: The faculty team will understand the features, strengths and challenges of the new Science 7-10 Syllabus and show enthusiasm for its implementation.

The team leader will

Lead

- o an exploration of the NESA <u>NSW Curriculum</u> website and <u>Science 7-10 Syllabus</u> (2023) webpage.
- o an overview of the syllabus, its requirements and support documents.
- o an analysis of the syllabus eg strengths and opportunities, challenges and risks.
- o a deeper exploration of the focus areas, including targeted Working Scientifically outcomes, to identify content that is similar and different to the Science Years 7-10 Syllabus (2018).

7-10 New Science Syllabus Resources

Step Three: Developing a Scope and Sequence

Objective: The faculty team will produce a Scope and Sequence for Years 7 to 10 which meets NESA requirements and is appropriate for the school context.

The team leader and faculty team will Determine

- o the general order of focus areas. Implement focus areas in the syllabus order as intended by NESA or re-arrange them if there is a significant reason to do so.
- o the outcomes associated with each focus area. Check the "show aligned content" box on the <u>outcomes</u> page of the syllabus.
- o how you will treat the <u>Data Science</u> focus areas in Stages 4 and 5. Consider how this will affect the length of focus areas and where term breaks would fall in the Scope and Sequence.
- o the nature of four Depth Studies (2 in Stage 4 and 2 in Stage 5) and the focus areas in which they will be embedded.
- o the general time allocation for each focus area. Base this on experience, including time allocations for Depth Studies and Data Science. Consider, also, NESA's notes on Balance of Content.

Design

o a Scope and Sequence for Years 7 to 10 with reference to NESA's <u>samples</u>.

Step Four: Programming and Resourcing

Objective: The faculty team will produce programs with a cohesive progression of learning which include identified teaching resources.

The team leader will Organise

- o selection of an appropriate programming template eg STANSW.
- o collaborative templates that will allow easy entry of syllabus outcomes, content and information by multiple team members.
- o your team to complete the programming task eg Years 7 and 9 in 2024, Years 8 and 10 in 2025, mini collaborative teams and time allocation.

In collaboration, the faculty team will Identify

- o the order of content within each focus area to form a cohesive progression of learning.
- o teaching strategies to address the syllabus content and outcomes to ensure teaching addresses the full extent of the content but avoids going beyond it.
- o formal assessment tasks and where they take place in the Scope and Sequence. Backwards design teaching strategies to enable assessment.
- o optional <u>Working Scientifically</u> skills additional to the targeted skills in each focus area. These may be required to address Depth Studies or Data Science content.

Design

o programs for focus areas, with optional new names.

The faculty team will Identify

- o online, textbook and specialist resources relevant to content and Working Scientifically skills in the new Science 7-10 syllabus.
- o resources within the school and the local community, tertiary or commercial partners that could provide additional learning opportunities for students.
- o links between programs and teaching resources available on the NESA <u>NSW Curriculum</u> website.
- o hands-on experiences that will engage students.
- o resource needs eg equipment, professional library, textbooks and commercial products to purchase.

Step Five: Evaluating

Objective: The team leader and faculty team will evaluate programs and Scopes and Sequences both during implementation and following initial implementation to improve student engagement and learning.

The team leader and faculty team will Evaluate

- o the programs for development of Working Scientifically skills. Ensure that students will have an opportunity to apply and practise all Working Scientifically content.
- o the programs for time allocation and adjust Scopes and Sequences if necessary.
- o Depth Studies and assessment tasks and adjust if necessary.
- o available resources and identify gaps.
- o student engagement and learning.